skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Liming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An unsupervised text-to-speech synthesis (TTS) system learns to generate speech waveforms corresponding to any written sentence in a language by observing: 1) a collection of untranscribed speech waveforms in that language; 2) a collection of texts written in that language without access to any transcribed speech. Developing such a system can significantly improve the availability of speech technology to languages without a large amount of parallel speech and text data. This paper proposes an unsupervised TTS system based on an alignment module that outputs pseudo-text and another synthesis module that uses pseudo-text for training and real text for inference. Our unsupervised system can achieve comparable performance to the supervised system in seven languages with about 10-20 hours of speech each. A careful study on the effect of text units and vocoders has also been conducted to better understand what factors may affect unsupervised TTS performance. The samples generated by our models can be found at https://cactuswiththoughts.github.io/UnsupTTS-Demo, and our code can be found at https://github.com/lwang114/UnsupTTS. 
    more » « less
  2. Muresan, Smaranda; Nakov, Preslav; Villavicencio, Aline (Ed.)
    Phonemes are defined by their relationship to words: changing a phoneme changes the word. Learning a phoneme inventory with little supervision has been a longstanding challenge with important applications to under-resourced speech technology. In this paper, we bridge the gap between the linguistic and statistical definition of phonemes and propose a novel neural discrete representation learning model for self-supervised learning of phoneme inventory with raw speech and word labels. Under mild assumptions, we prove that the phoneme inventory learned by our approach converges to the true one with an exponentially low error rate. Moreover, in experiments on TIMIT and Mboshi benchmarks, our approach consistently learns a better phoneme-level representation and achieves a lower error rate in a zero-resource phoneme recognition task than previous state-of-the-art self-supervised representation learning algorithms. 
    more » « less
  3. null (Ed.)
    Multimodal word discovery (MWD) is often treated as a byproduct of the speech-to-image retrieval problem. However, our theoretical analysis shows that some kind of alignment/attention mechanism is crucial for a MWD system to learn meaningful word-level representation. We verify our theory by conducting retrieval and word discovery experiments on MSCOCO and Flickr8k, and empirically demonstrate that both neural MT with self-attention and statistical MT achieve word discovery scores that are superior to those of a state-of-the-art neural retrieval system, outperforming it by 2% and5% alignment F1 scores respectively. 
    more » « less
  4. null (Ed.)
    Discovering word-like units without textual transcriptions is an important step in low-resource speech technology. In this work,we demonstrate a model inspired by statistical machine translation and hidden Markov model/deep neural network (HMM-DNN) hybrid systems. Our learning algorithm is capable of discovering the visual and acoustic correlates of distinct words in an unknown language by simultaneously learning the map-ping from image regions to concepts (the first DNN), the map-ping from acoustic feature vectors to phones (the second DNN),and the optimum alignment between the two (the HMM). In the simulated low-resource setting using MSCOCO and Speech-COCO datasets, our model achieves 62.4 % alignment accuracy and outperforms the audio-only segmental embedded GMM approach on standard word discovery evaluation metrics. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)